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The problem of coincidences of planar lattices is analyzed using Clifford algebra.

It is shown that an arbitrary coincidence isometry can be decomposed as a

product of coincidence reflections and this allows planar coincidence lattices to

be characterized algebraically. The cases of square, rectangular and rhombic

lattices are worked out in detail. One of the aims of this work is to show the

potential usefulness of Clifford algebra in crystallography. The power of Clifford

algebra for expressing geometric ideas is exploited here and the procedure

presented can be generalized to higher dimensions.

1. Introduction

Coincidence site lattice (CSL) theory has provided partial

answers to the complex problem that arises in the description

of grain boundaries and interfaces (see, for instance, Sutton &

Baluffi, 1995). Most of the existing geometric models of grain

boundaries idealize the two crystals that meet at a boundary as

two interpenetrating lattices and it is assumed that grain

boundaries with special properties arise when there is a high

degree of good fit (or matching) between the lattices. The CSL

model (Ranganathan, 1966) considers points common to both

lattices (the intersection lattice) as points of good fit and

assumes that special boundaries arise when the density of

coincidence sites is high, because many atoms would occupy

sites common to both grains. The experimental support for the

CSL model is based on the special properties, such as changed

migration rates, observed for boundaries with certain orien-

tational relationships. Working with this model, we have to

consider two identical copies of a lattice � (one of the 14

Bravais lattices) brought into coincidence. Next one lattice is

rotated, relative to the other, by an angle � about an axis

through a common lattice point. Then for different values of �
two possibilities will arise: no lattice sites will coincide (except

the site where the rotation axis passes through) or, owing to

the periodicity of �, an infinite number will coincide forming a

lattice. Such a lattice is a CSL and the ratio of the volumes of

primitive cells for the CSL and for � is denoted by �. High

densities of coincident sites correspond to low values of �.

Since the advent of quasicrystals, it has been desirable to

extend the mathematical theory of CSL to more dimensions.

In general, the problem can be stated as follows. Let � be a

lattice in Rn and let R 2 OðnÞ be an orthogonal transforma-

tion. R is called a coincidence isometry if � \ R� is a

sublattice of �. The problem is therefore to identify and

characterize the coincidence isometries of a given lattice �.

Several approaches have been used to tackle this problem.

Fortes (1983) developed a matrix theory of CSL in arbitrary

dimensions, including a method to calculate a basis for the

coincidence lattice through a particular factorization of the

matrix defining the relative orientation. The same matrix

approach was implemented by Duneau et al. (1992), but they

evaluated the parameters of the coincidence lattice using a

method based on the Smith normal form for integer matrices.

Baake (1997) used complex numbers and quaternions to solve

the problem in dimensions up to 4. Finally, Aragón et al. (1997)

proposed a weak coincidence criterion and used four-dimen-

sional lattices to characterize coincidence lattices in the plane.

Here, we analyze the problem using Clifford algebra with a

twofold purpose. First, the power of this mathematical

language for expressing geometric ideas is used to solve the

coincidence problem, which is merely geometric. Second, we

try to show that Clifford algebra, already used as a powerful

language in several fields, can also be useful in geometrical

crystallography. Although nothing new emerges, the results

provide new insights in this and other problems in geometrical

crystallography and the approach could be valuable for

extension to arbitrary dimensions. In this approach, reflections

are considered as primitive transformations and Clifford

algebra emerges as a natural tool for this problem, without

using matrices and only a minimum of group theory. It is found

that any arbitrary coincidence isometry can be decomposed as

a product of coincidence reflections by vectors of the lattice �,

and the group of coincidence isometries is characterized by

providing a way to generate it from vectors of �.

The paper is organized as follows. In x2, we provide a brief

introduction to Clifford algebra by considering the particular



case of the Euclidean plane and by focusing only on results

relevant to the coincidence problems. In x3 some basic

mathematical definitions of the CSL problem are presented.

xx4, 5 and 6 present the solution of the coincidence problem

for square, rectangular and rhombic lattices, respectively.

Finally, x7 is devoted to conclusions and discussion.

2. The Clifford algebra of the Euclidean plane

Clifford algebra has proved to be a useful language in many

areas of physics, engineering and computer science (see, for

example, Bayro-Corrochano & Sobczyk, 2001). In crystal-

lography, Hestenes (2002) presents a new approach to

symmetry groups and Aragón et al. (2001) use Clifford algebra

to study the problem of faceting in quasicrystals and to state

the basis of the CSL theory which is developed and exploited

here.

In what follows, we introduce the basic elements of Clifford

algebra by considering the particular case of the Euclidean

plane with the standard scalar (inner) product.

Definition 1. The real associative and distributive algebra

generated by the Euclidean plane and the product rules

e2
i ¼ 1; i ¼ 1; 2;

e1e2 þ e2e1 ¼ 0;
ð1Þ

where fe1; e2g is the standard canonical basis of R2, is called

universal Clifford algebra or geometric algebra of the plane,

and is denoted by R2;0.

As a vector space, the geometric algebra R2;0 is four-

dimensional, with basis f1; e1; e2; e1e2g, where e1e2 is called a

bivector. A general element of this vector space is formed by

an arbitrary linear sum over the four basis elements and is

called a multivector. If a1; . . . ; a4 are scalars, an arbitrary

multivector is then

A ¼ a11þ a2e2 þ a3e3 þ a4e1e2:

From Definition 1, we have that if x; y 2 R2, i.e.

x ¼ �1e1 þ �2e2 and y ¼ �1e1 þ �2e2, for real numbers �1, �2,

�1 and �2, then the geometric product of x and y is

xy ¼ �1�1 þ �2�2 þ �1�2 � �2�1ð Þe1e2: ð2Þ

The multiplication rules (1) lead also to the so-called

fundamental axiom of geometric algebra:

Proposition 1. If x; y 2 R2, then x2; y2 � 0 and xyþ yx 2 R.

Further,

x2 ¼ x � x;
1
2 ðxyþ yxÞ ¼ x � y;

where x � y is the Euclidean inner product in R2.

Proof. Let x ¼ �1e1 þ �2e2 and y ¼ �1e1 þ �2e2 be vectors in

R2. Then, from (2), we have that

x2
¼ ð�1e1 þ �2e2Þ

2
¼ �2

1 þ �
2
2 � 0

and

xyþ yx ¼ 2 �1�1 þ �2�2ð Þ 2 R: tu

The scalar and bivector parts of the geometric product (2)

are associated, respectively, with the inner product

x � y ¼ �1�1 þ �2�2

and the outer (Grassman) product

x ^ y ¼ ð�1�2 � �2�1Þe1e2:

Consequently, the geometric product (2) can be written as

xy ¼ x � yþ x ^ y: ð3Þ

From the above expressions, the inner and outer products can

be defined in terms of the geometric product as

x ^ y ¼ 1
2ðxy� yxÞ; ð4Þ

x � y ¼ 1
2ðxyþ yxÞ; ð5Þ

which are quite convenient coordinate-free definitions.

Notice that, since x � y ¼ y � x and

x ^ y ¼ 1
2ðxy� yxÞ ¼ �1

2ðyx� xyÞ ¼ �y ^ x;

the geometric product (2) is formed by a symmetric (x � y) and

an antisymmetric (x ^ y) part.

In geometric algebra, the inverse of a general multivector

can be defined (Hestenes & Sobczyk, 1985). In particular, any

vector x 2 R2, x 6¼ 0, has the inverse

x�1 ¼ x=x2: ð6Þ

2.1. Geometric interpretation

Bivectors have an interesting geometric interpretation. Just

as a vector describes an oriented line segment, with the

direction of the vector represented by the oriented line and

the magnitude of the vector is equal to the length of the

segment, so a bivector x ^ y describes an oriented plane

segment, with the direction of the bivector represented by the

oriented plane and the magnitude of the bivector, measuring

the area of the plane segment. The same interpretation is

extended to higher-order terms not discussed here: x ^ y ^ z

represents an oriented volume, and so on.

The bivector x ^ y then defines an oriented parallelogram

with sides x and y (Fig. 1) and area given by jx ^ yj ¼

j�1�2 � �2�1j. Notice also that x ^ y and y ^ x have the same

magnitude but opposite directions, as illustrated in Fig. 1.

The geometric product (2) relates algebraic operations with

geometrical properties. In particular, we have the following

important geometric results:

xy ¼ yx() x k y() x ^ y ¼ 0() xy ¼ x � y;

xy ¼ �yx() x ? y() x � y ¼ 0() xy ¼ x ^ y:

That is, parallel vectors commute under the geometric product

and perpendicular vectors anticommute.
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2.2. Reflections and rotations

The algebraic properties of geometric algebra provide us

with a convenient way of representing reflections and

rotations. Suppose a 2 R2 is a non-zero vector and let Ha be

its orthogonal complement, i.e. Ha ¼ fx 2 R
2
ja � x ¼ 0g. A

reflection of a with respect to Ha is an orthogonal transfor-

mation with the following properties

’ðaÞ ¼ �a;

’ðwÞ ¼ w if w 2 Ha:
ð7Þ

The transformation ’ is called reflection by the line Ha.

Lemma 1. The transformation Ta : R2
! R2, defined by

TaðxÞ ¼ �axa�1; ð8Þ

is orthogonal and represents the reflection of the vector x by

the line Ha, the orthogonal complement of a.

Proof. Since the Clifford algebra is distributive, we can easily

see that Ta is linear. Now, it remains to prove that Ta has the

properties (7). First, notice that

TaðaÞ ¼ �aaa�1 ¼ �a:

Now, since a � w ¼ 0 for all w 2 Ha, then aw ¼ �wa and we

get

TaðwÞ ¼ �awa�1 ¼ �ð�waÞa�1 ¼ w; w 2 Ha;

and this completes the proof.
&

Remark 1. Since the inverse of a reflection is the reflection

itself, we can easily prove that

TaðxÞ ¼ �axa�1 ¼ �a�1xa ¼ Ta�1 ðxÞ;

and the following is also true

TaðxÞ ¼ T�aðxÞ; for � 2 R; � 6¼ 0: ð9Þ

The representation of the reflection of a vector x given by

(8) is also valid in Rn. In this case, Ha is the hyperplane

orthogonal to a.

A rotation is the result of two successive reflections. If the

transformation (8) is followed by the transformation Tb, then

we have

TbTaðxÞ ¼ Tbð�axa�1
Þ ¼ baxa�1b�1:

Lemma 2. The transformation T : R2
! R

2, defined by

TðxÞ ¼ RxR�1;

where R ¼ ab, is orthogonal and represents the rotation of the

vector x through the angle 2�, where � is the angle formed by

the vectors a and b.

Now we have finally a result that will be extensively used in

the following sections. It asserts that, given an arbitrary

rotation T, we can always find a vector a 2 R2 such that T can

be viewed as a reflection by the basis vector e2 followed by a

reflection by the vector a. In other words, the next proposition

describes a method to decompose an arbitrary rotation T into

a product of reflections.

Proposition 2. Let T : R2
! R2 be a nontrivial rotation. Then,

there exists a 2 R2, such that

TðxÞ ¼ ae2xe2a�1
¼ TaTe2

ðxÞ:

Proof. Let T : R2
! R2 be a rotation through an angle �, then

Tðe1Þ ¼ cos �e1 þ sin �e2;

Tðe2Þ ¼ � sin �e1 þ cos �e2:

Consider a 2 R2; defined by

a ¼ Tðe1Þ � e1 ¼ ðcos � � 1Þe1 þ sin �e2 6¼ 0:

According to (6), the inverse of this vector is

a�1
¼

a

a2
¼
ðcos � � 1Þe1 þ sin �e2

2ð1� cos �Þ
:

Now, we define ’ðxÞ ¼ ae2xe2a�1, and apply this map to e1 to

get

’ðe1Þ ¼ ae2e1e2a�1

¼ �ae1a�1

¼ �
ae1a

2ð1� cos �Þ

¼
�½ðcos � � 1Þ þ sin �e2e1�a

2ð1� cos �Þ

¼ �
½ðcos � � 1Þ2 � sin2 ��e1 þ 2ðcos � � 1Þ sin �e2

2ð1� cos �Þ
:

Since ðcos � � 1Þ2 � sin2 � ¼ �2 cos � þ 2 cos2 � ¼
2 cos �ðcos � � 1Þ, we have that

’ðe1Þ ¼ Tðe1Þ:

Now we apply ’ to e2
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’ðe2Þ ¼ ae2e2e2a�1

¼ ae2a�1

¼
ae2a

2ð1� cos �Þ

¼
½ðcos � � 1Þe1e2 þ sin ��a

2ð1� cos �Þ

¼
2ðcos � � 1Þ sin �e1 þ ½sin2 � � ðcos � � 1Þ2�e2

2ð1� cos �Þ

¼ � sin �e1 þ cos �e2:

We have proved that ’ðeiÞ ¼ TðeiÞ for i ¼ 1; 2, and conse-

quently we conclude that ’ðxÞ ¼ TðxÞ. &

3. Some mathematical definitions for the CSL problem

Here we present a brief summary of basic concepts related to

coincidence lattices. For this purpose, we adopt definitions and

notation given by Baake (1997), who formulated the CSL

problem in more mathematical terms.

Definition 2. A discrete subset � � Rn is called a lattice, of

dimension n, if it is spanned as � ¼ Za1 � Za2 � � � � � Zan,

where fa1; a2; . . . ; ang is a set of linearly independent vectors

in Rn. These vectors form a basis of the lattice.

The lattice � is isomorphic to the free Abelian group of order

n. It leads us to define the concept of a sublattice:

Definition 3. Let � be a lattice inRn. A subset �0 � � is called

a sublattice of � if it is a subgroup of finite index, i.e.

½� : �0�<1 (the number of right lateral classes is finite). It is

also said that � is a superlattice of �0.

The following two definitions are central for the coincidence

problem.

Definition 4. Two lattices �1 and �2 are called commensurate,

denoted by �1 � �2, if and only if �1 \�2 is a sublattice of

both �1 and �2.

Definition 5. Let � be a lattice in Rn. An orthogonal trans-

formation R 2 OðnÞ is called a coincidence isometry of � if

and only if R� � �. The integer �ðRÞ :¼ ½� : � \ R�� is

called the coincidence index of R with respect to �. If R is not

a coincidence isometry then �ðRÞ :¼ 1. Two useful sets are

also defined:

OCð�Þ :¼ fR 2 OðnÞ j �ðRÞ<1g;

SOCð�Þ :¼ fR 2 OCð�Þ j detðRÞ ¼ 1g:

4. CSL from reflections for the case of the square lattice

It is well known that any isometry is the product of at most

four reflections (see for instance Coxeter, 1973). In that sense,

we can consider reflections as the primitive transformations1

and, in this case, Clifford algebra is a natural tool for this

problem. In Aragón et al. (2001), we adopted this point of view

and developed some preliminary results about the CSL of the

(hyper-)cubic lattice in arbitrary dimensions. The main results

presented in that work can be summarized as follows.

Proposition 3. Let � ¼ Zn
¼ Ze1 � Ze2 � � � � � Zen, with

fe1; e2; . . . ; eng the canonical basis of Rn. If a 2 Zn, then the

reflection defined by

TaðxÞ ¼ �axa�1

is a coincidence reflection, that is Ta 2 OCðZn
Þ.

Proposition 4. If T is a reflection with respect to a hyperplane

such that T 2 OCðZn
Þ, then there exists a 2 Zn such that

TðxÞ ¼ TaðxÞ ¼ �axa�1:

We then proved that, given an arbitrary coincidence

reflection, we can always consider that the reflection is by a

vector of the lattice. Thus coincidence reflections are identified

with lattice vectors that generate the lattice � ¼ Zn. We also

conjectured that any orthogonal transformation T 2 OCðZn
Þ

can be decomposed as a product of coincidence reflections in

vectors of the lattice Zn. In what follows, we will prove that our

conjecture is true for planar lattices, and explore some of its

consequences. This result is presented in the following.

Proposition 5. Let T : R2
! R2 be an orthogonal transfor-

mation, different from the identity. If T 2 OCðZ2
Þ, then there

exists a 2 Z2 such that

TðxÞ ¼
TaðxÞ ¼ �axa�1 if detðTÞ ¼ �1,

TaTe2
ðxÞ ¼ ae2xe2a�1 if detðTÞ ¼ 1.

�

Proof. If T 2 OCðZ2
Þ and detðTÞ ¼ �1 then T is a reflection

by a line, say, l. Since T is different from the identity then

TðeiÞ 6¼ ei for any i ¼ 1; 2. Now consider the vector

b ¼ Tðe1Þ � e1;

which is orthogonal to the reflection line l and can be used to

write the reflection as in Lemma 1. Since TðeiÞ has rational

components (as is readily inferred from the fact that an

orthogonal matrix with only rational entries is a coincidence

isometry), then Tðe1Þ � e1 also has rational entries and we can

find � 2 Z such that �b 2 Z2. By defining a ¼ �b, from (9) we

get

TðxÞ ¼ �axa�1:

If T 2 OCðZ2
Þ, different from the identity, and detðTÞ ¼ 1

then T is a rotation through an angle �. Following the previous

reasoning and using Proposition 2, we have that
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TðxÞ ¼ be2xe2b�1
¼ TbTe2

;

where b ¼ Tðe1Þ � e1 and there exists � 2 Z such that

�b 2 Z2. By defining a ¼ �b, we obtain

TbTe2
¼ TaTe2

;

TðxÞ ¼ ae2xe2a�1;

which proves the proposition. &

It is important to remark that, given the property (9), we

can assume that in Proposition 5 the components of the vector

a are relatively prime (they share no common positive divisors

except 1). It is a consequence of the fact that if

a ¼ �1e1 þ �2e2

and we define

a0 ¼
�1

g:c:d:ð�1; �2Þ
e1 þ

�2

g:c:d:ð�1; �2Þ
e2 ¼

1

g:c:d:ð�1; �2Þ
a;

ð10Þ

where g:c:d:ð�1; �2Þ stands for the greatest common divisor of

�1 and �2, then

Ta ¼ Ta0 :

Notice that with all these results we have characterized

OCðZ2
Þ by providing a procedure to obtain an arbitrary

element of OCðZ2
Þ.

On the other hand, since Te2
ðZ2
Þ ¼ Z2, we have that

Z2
\ ðTaTe2

ÞðZ2
Þ ¼ Z2

\ TaðZ
2
Þ; a 2 Z2;

and an immediate consequence is the fact that every vector

a 2 Z2 defines the following two orthogonal transformations:

TaðxÞ ¼ �axa�1;

TaTe2
ðxÞ ¼ RaðxÞ ¼ ae2xe2a�1:

Also, since

Z
2
\ TaðZ

2
Þ ¼ Z

2
\ RaðZ

2
Þ;

�ðTaÞ ¼ �ðRaÞ;

a basis of Z2
\ RaðZ

2
Þ can be obtained if the basis of

Z2
\ TaðZ

2
Þ is known.

4.1. The coincidence index

Besides Definition 5, the coincidence index has the

following interpretation. If �0 ¼ Za1 � Za2 � . . .� Zan is a

coincidence lattice, which is a sublattice of � ¼
Zb1 � Zb2 � . . .� Zbn, then the coincidence index ½� : �0� is
the ratio of the volume of the unit cell defined by the vectors ai

and the volume of the unit cell defined by the vectors bi.

In the two-dimensional case that we are considering, the

coincidence lattice �0 ¼ Za1 � Za2 is a subset of Z2 and

½Z2 : �0� ¼ ja1 ^ a2j. In what follows, we detail the procedure

to find the coincidence index.

We have seen in Proposition 5 that, given an arbitrary

coincidence rotation R in the plane, we can always find a

vector a 2 Z2, with relatively prime components, such that the

transformation can be written as TaTe2
. Further, at the end of

the previous section we have shown that a basis for the

coincidence lattice Z2
\ RaðZ

2
Þ can be obtained from the basis

of the lattice Z2
\ TaðZ

2
Þ. We will then analyze a Ta 2 OCðZ2

Þ,

where a ¼ �1e1 þ �2e2 2 Z
2 and g:c:d:ð�1; �2Þ ¼ 1. From (6),

this transformation can be written as

TaðxÞ ¼ �axa�1 ¼ �
axa

a2
:

Notice that TaðaÞ ¼ �a and it can be verified that for any

x 2 Z2 we have a2TaðxÞ 2 Z
2.

Now consider the vector b 2 Z2 defined by

b ¼ ae1e2 ¼ ð�1e1 þ �2e2Þe1e2 ¼ ��2e1 þ �1e2: ð11Þ

Since b is orthogonal to a, as can be easily inferred, then

ab ¼ �ba and

TaðbÞ ¼ �
aba

a2
¼

ba2

a2
¼ b:

It implies that the vectors c ¼ TaðaÞ and d ¼ TaðbÞ belong to

Z
2
\ TaðZ

2
Þ; the lattice �1 ¼ Zc� Zd is a sublattice of

Z
2
\ TaðZ

2
Þ and of Z2. Further,

�1 <Z
2
\ TaðZ

2
Þ<Z2:

Now from a basic group theory result, we have that

½Z2 : �1� ¼ ½Z
2
\ TaðZ

2
Þ : �1�½Z

2 : Z2
\ TaðZ

2
Þ�;

and since ½Z2 : �1� ¼ jc ^ dj ¼ �2
1 þ �

2
2 ¼ a2, by substituting

in the previous equation we conclude that

½Z2 : Z2
\ TaðZ

2
Þ� divides a2:

With this result and the definition of coincidence index, we

can state the following:

Lemma 3. If a ¼ �1e1 þ �2e2 2 Z
2, where g:c:d:ð�1; �2Þ ¼ 1,

then �ðTaÞ and �ðRaÞ divide a2.

More can be said about the coincidence index. By consid-

ering a ¼ �1e1 þ �2e2 2 Z
2, where g:c:d:ð�1; �2Þ ¼ 1, we have

that

Taðe1Þ ¼
ð�2

2 � �
2
1Þe1 � 2�1�2e2

�2
1 þ �

2
2

¼
�2�1

�2
1 þ �

2
2

aþ e1;

Taðe2Þ ¼
�2�1�2e1 � ð�

2
2 � �

2
1Þ�2e2

�2
1 þ �

2
2

¼
�2�2

�2
1 þ �

2
2

aþ e2:

If both �1 and �2 are odd numbers, then �2
1 þ �

2
2 is even and,

consequently,

a2

2
TaðeiÞ 2 Z

2; i ¼ 1; 2:

It can be proved that a2=2 is the least positive integer such that

ða2=2ÞTaðeiÞ 2 Z
2 and therefore a2=2 divides �ðTaÞ.

Now let us consider the vectors c0 ¼ ða2=2ÞTaðe1Þ and

d0 ¼ ða2=2ÞTaðe2Þ. The lattice spanned by these vectors is a
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sublattice of TaðZ
2
Þ \ Z2 and, by the above reasoning, we can

see that �ðTaÞ divides ða2=2Þ2.

All the above results can be summarized as follows:

a2

2
j �ðTaÞ; ð12Þ

�ðTaÞ j a
2; ð13Þ

�ðTaÞ j
a2

2

� �2

: ð14Þ

From (12) and (13), we get

a2 ¼ �ðTaÞq ¼
a2

2
pq; 2 ¼ pq:

Since p and q are integers, we have two possibilities:

1. p ¼ 2 and q ¼ 1. In this case, we can conclude that

a2 ¼ �ðTaÞ, but from (14) we have

a2

2

� �2

¼ a2k; k 2 Z; a2
¼ 4k;

which cannot be fulfilled since a2=4 has a remainder of 2.

2. p ¼ 1 and q ¼ 2. In this case, we obtain a valid condition:

a2 ¼ �ðTaÞ2;
a2

2
¼ �ðTaÞ:

Finally, let us consider that �1 and �2 are relatively prime

and one of them is an even number. It can be proved that in

this case a2 is the least positive integer such that a2Tðe1Þ 2 Z
2.

It implies that a2 j �ðTaÞ and, from the above results,

a2 ¼ �ðTaÞ.

We have now all the ingredients to state the following

Proposition 6. If a ¼ �1e1 þ �2e2 2 Z
2 and g:c:d:ð�1; �2Þ ¼ 1,

then

1. If �1 and �2 are both odd numbers, then

�ðTaÞ ¼ �ðRaÞ ¼
a2

2
:

2. If either �1 or �2 is even, then

�ðTaÞ ¼ �ðRaÞ ¼ a2:

4.2. Basis for the CSL

The following theorem states that the CSL of Z2 is a square

lattice and the basis vectors are obtained during the proof.

Theorem 1. Let a ¼ �1e1 þ �2e2 2 Z
2 be a vector such that

g:c:d:ð�1; �2Þ ¼ 1, then Z
2
\ TaðZ

2
Þ and Z

2
\ RaðZ

2
Þ are

square lattices.

Proof. If either �1 or �2 is even, then a2 is odd and

½Z
2 : Z2

\ TaðZ
2
Þ� ¼ a2; a2 odd:

If both �1 and �2 are odd, then a2 is even and

½Z
2 : Z2

\ TaðZ
2
Þ� ¼

a2

2
; a2 even:

Both cases are now considered in detail.

1. a2 is odd.

Consider the vector defined in (11):

b ¼ ��2e1 þ �1e2:

From the previous section, we know that TaðaÞ ¼ �a,

TbðbÞ ¼ b and that the lattice spanned by a and b is a

sublattice of Z2
\ TaðZ

2
Þ. Since ja ^ bj ¼ a2, as can be easily

verified, then

Za� Zb ¼ Z2
\ TaðZ

2
Þ:

2. a2 is even.

In this case, there exist vectors c; d 2 Z2
\ TaðZ

2
Þ such that

d2 ¼ c2; dc ¼ �cd:

It turns out that fc; dg is a square basis of Z2
\ TaðZ

2
Þ, as we

will prove in what follows.

Consider the following vectors in Z2:

c ¼ 1
2ða� bÞ ¼ Taðc

0
Þ;

d ¼ 1
2ðaþ bÞ ¼ Taðd

0Þ;
ð15Þ

where b is given in (11) and

c0 ¼ �1
2ðaþ bÞ; d0 ¼ 1

2ðb� aÞ:

The vectors defined in (15) fulfill

cþ d ¼ a;

c2
¼ d2

¼
a2

2
;

jc ^ dj ¼
a2

2
¼ ½Z2 : Z2

\ TaðZ
2
Þ�;

so we can conclude that fc; dg is a square basis of Z2
\ TaðZ

2
Þ.
&

From the previous theorem, we have in summary that, if a2

is odd, a basis for the CSL is fa; bg, where b is given by (11).

Otherwise, if a2 is even, a basis of the CSL is fc; dg, where c and

d are defined in (15).

Corollary 1. If T : R2
! R2 is a transformation such that

T 2 OCðZ2
Þ, then Z2

\ TðZ2
Þ is a square lattice.

Proof. From Proposition 5, T can be written as either

TðxÞ ¼ �axa�1 or TðxÞ ¼ ae2xe2a�1, where a ¼

�1e1 þ �2e2 2 Z
2 and g:c:d:ð�1; �2Þ ¼ 1. Thus, Theorem 1

applies. &

4.3. Examples

1. As a simple example consider the problem of determining

a basis of the CSL corresponding to � ¼ 17. We know (see
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Ranganathan, 1966) that � ¼ 17 ¼ 12 þ 42 and tanð�=2Þ ¼

1=4, which gives a rotation angle � ¼ 28:0724	. With respect to

the canonical basis, the matrix associated with this orthogonal

transformation is

T ¼
15
17 �

8
17

8
17

5
17

� �
:

Thus Tðe1Þ � e1 ¼ ð�2=17; 8=17Þ and we can consider

a ¼ ð�1; 4Þ 2 Z2. By using the geometric product, this trans-

formation is written as

TaðxÞ ¼ � �e1 þ 4e2ð Þe2xe2 �e1 þ 4e2ð Þ
�1:

From Proposition 6, we obtain the expected coincidence index

�ðTaÞ ¼ a2
¼ 17:

A basis for CSL is deduced from Theorem 1 (case a2 odd). We

have b ¼ �4e1 � e2 and therefore a basis for Z2
\ TaZ

2 is

f�e1 þ 4e2;�4e1 � e2g:

2. Consider the set of orthogonal transformations in R2 that

when applied to Z2 produce coincident lattices with coin-

cidence index equal to 5, that is

�5 ¼ fT 2 OCðZ2
Þ j�ðTÞ ¼ 5g:

With the procedure discussed in this section, we can easily find

the elements of �5 and the basis for the coincidence lattice in

each case. From the simple facts that 12 þ 22 ¼ 5 and

12 þ 32 ¼ 10, the orthogonal transformations belonging to �5

are tabulated in Table 1. As explained above, a ¼ �1e1 þ �2e2

and in this case b is a vector orthogonal to a. Notice that the

set is composed of 16 transformations: eight reflections and

eight rotations.

5. The rectangular lattice

Let � be a rectangular lattice in R2, i.e. � ¼ Za1 � Za2 and

a1 � a2 ¼ 0. In this section, we study and characterize the group

OCð�Þ.
Here we can also associate coincidence reflections with

reflections by vectors in �. This is stated in the following

proposition, which is valid for arbitrary lattices in R2 (see

Proposition 4).

Proposition 7. Let � ¼ Za1 � Za2 be a lattice in R
2. If

T 2 OCð�Þ is a reflection such that TðxÞ ¼ TbðxÞ ¼ �bxb�1,

b 2 R2, then we can always find c 2 � such that TðxÞ ¼

�bxb�1 ¼ �cxc�1.

Proof. Since T 2 OCð�Þ, for a given a 2 � we can always find

m 2 Z such that mTðaÞ ¼ TðmaÞ 2 �. It is equivalent to say

that there exists x 2 � such that y ¼ TðxÞ 2 �, that is

y ¼ �bxb�1 2 �. Thus yb ¼ �bx and, consequently,

y � b ¼ �b � x;

y ^ b ¼ �b ^ x ¼ x ^ b:

The last equation implies that ðy� xÞ ^ b ¼ 0 and, since

x; y 2 �, there exists � 2 R such that y� x ¼ �b 2 �. By

taking c ¼ �b 2 �, we get TðxÞ ¼ �bxb�1 ¼ �cxc�1. &

The generalization to rectangular basis of Proposition 2, to

decompose an arbitrary orthogonal transformation T into a

product of reflections, reads as follows.

Proposition 8. Let T : R2
! R2 be a nontrivial orthogonal

transformation. If a1; a2 2 R
2 are vectors such that a1 � a2 ¼ 0,

then there exists b 2 R2 such that

TðxÞ ¼
TbðxÞ ¼ �bxb�1 if detðTÞ ¼ �1;
TbTa2

ðxÞ ¼ ba2xa�1
2 b�1 if detðTÞ ¼ 1:

�

Proof. Assume T : R2
! R

2, different from the identity, and

detðTÞ ¼ �1. In this case, T is a reflection by a line, say, l.

Since T is different from the identity and fa1; a2g is an

orthogonal basis of R2, then TðaiÞ 6¼ ai for some i ¼ 1; 2. Now

consider the vector

b ¼ Tða1Þ � a1; ð16Þ

which is orthogonal to the reflection line l and can be used to

write the reflection as in Lemma 1: TðxÞ ¼ TbðxÞ ¼ �bxb�1.

Now assume detðTÞ ¼ 1. In this case, T is a rotation through

an angle � and also TðaiÞ 6¼ ai for i ¼ 1; 2. Considering the

vector b defined in (16) and since Tbða1Þ ¼ Tða1Þ, we have that

Tb½Tða1Þ� ¼ Tbðbþ a1Þ ¼ �bþ Tbða1Þ ¼ a1:

Since detðTbTÞ ¼ �1, it readily follows that Tb½Tða2Þ� ¼ �a2

and that Ta2
Tb½Tða2Þ� ¼ a2. Therefore, T ¼ TbTa2

. &

As in the square lattice, here also any orthogonal trans-

formation T 2 OCð�Þ can be decomposed as a product of

coincidence reflections by vectors of the lattice �, as follows

from the following.

Proposition 9. Let � ¼ Za1 � Za2 be a lattice in R2, where a1

and a2 are orthogonal vectors. If T : R2
! R2, is a nontrivial
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Table 1
Elements of the set �5, where a ¼ �1e1 þ �2e2 and b is a vector
orthogonal to a.

Only rotations are tabulated, with the rotation angle given in the last column.
To each coincidence rotation there corresponds a coincidence reflection
defined by the vector a.

�1 �2 a b Basis of the CSL Rotation angle (	)

1 2 e1 þ 2e2 2e1 � e2 fe1 þ 2e2; 2e1 � e2g �53.13
2 1 2e1 þ e2 e1 � 2e2 f2e1 þ e2; e1 � 2e2g 233.13
1 �2 e1 � e2 2e1 þ e2 f2e1 þ e2; e1 � 2e2g 53.13
2 �1 2e1 � e2 e1 þ 2e2 f2e1 � e2; e1 þ 2e2g 126.87
1 3 e1 þ 3e2 3e1 � e2 f2e1 þ e2; e1 � 2e2g �36.87
3 1 3e1 þ e2 e1 � 3e2 f2e1 � e2; e1 þ 2e2g 216.87
1 �3 e1 � 3e2 3e1 þ e2 f2e1 � e2; e1 þ 2e2g 36.87
3 �1 3e1 � e2 e1 þ 3e2 f2e1 þ e2; e1 � e2g 143.13



coincidence transformation, i.e. T 2 OCð�Þ, then there exists

c 2 � such that

TðxÞ ¼
TcðxÞ ¼ �cxc�1 if detðTÞ ¼ �1,

TcTa2
ðxÞ ¼ ca2xa�1

2 c�1 if detðTÞ ¼ 1.

�

Proof. Consider detðTÞ ¼ �1. Then T is a reflection and, by

Proposition 8, there exists b 2 R2 such that TðxÞ ¼

TbðxÞ ¼ �bxb�1. Since T 2 OCð�Þ, Tða1Þ has rational

components with respect to the basis fa1; a2g and, conse-

quently, b also has rational components. Thus, we can find

� 2 Z such that �b 2 �. By defining c ¼ �b and using (9), we

have TðxÞ ¼ �cxc�1.

Now assume detðTÞ ¼ 1. In this case, T is a rotation through

an angle � and, by Proposition 8, there exists b 2 R2 such that

TðxÞ ¼ ba2xa�1
2 b�1. By the above arguments, we can find

� 2 Z such that �b 2 �. By defining c ¼ �b, we have

TðxÞ ¼ ca2xa�1
2 c�1. &

Notice that, contrary to the case of the square lattice, given

a vector c 2 �, the reflection TcðxÞ ¼ cxc�1 is not necessarily a

coincidence reflection, that is, it may occur that Tc =2OCð�Þ. In

x5.2, we provide conditions under which a reflection Tc is a

coincidence reflection.

As in the case of square lattices, we can consider that in

Proposition 9 the components of the vector c, with respect to

the basis fa1; a2g, are relatively prime [see equation (10)].

Also, since Ta2
ð�Þ ¼ �, we have that

� \ ðTcTa2
Þð�Þ ¼ � \ Tcð�Þ; c 2 �;

and, consequently, every vector c 2 � defines the following

two orthogonal transformations:

TcðxÞ ¼ �cxc�1;

TcTa2
ðxÞ ¼ RcðxÞ ¼ ca2xa2c�1:

In particular, if TcðxÞ 2 OCð�Þ, then

� \ Tcð�Þ ¼ � \ Rcð�Þ;

�ðTcÞ ¼ �ðRcÞ

and a basis of � \ Rcð�Þ can be obtained if the basis of

� \ Tcð�Þ is known.

5.1. Coincidence index and basis of the CSL

Let � ¼ Za1 � Za2 be a lattice in R2, where a1 � a2 ¼ 0.

From the previous results, we know that there exists

c ¼ �1a1 þ �2a2 2 �, where g:c:d:ð�1; �2Þ ¼ 1, such that

Tc 2 OCð�Þ. Given that �1 and �2 are relatively prime, there

exist integers �1 and �2 such that

�1�1 þ �2�2 ¼ 1:

It guarantees the existence of a vector d 2 � such that

� ¼ Zc� Zd: ð17Þ

To see this, define

d ¼ �2a1 � �1a2;

and the previous statement follows from

c ^ d ¼ ð�1a1 þ �2a2Þ ^ ð�2a1 � �1a2Þ

¼ ð�1�1 þ �2�2Þa1 ^ a2

¼ a1 ^ a2: ð18Þ

Now, since TcðcÞ ¼ �c, then

TcðcÞ 2 � \ Tcð�Þ:

By considering the least natural number m such that

mTcðdÞ 2 � \ Tcð�Þ;

we claim that fc;mTcðdÞg is a basis of � \ Tcð�Þ.
It can be proved by noticing that, if y 2 � \ Tcð�Þ, then

there exists x 2 � such that y ¼ TcðxÞ. From (17), we have

y ¼ Tcð�cþ �dÞ ¼ �TcðcÞ þ �TcðdÞ ¼ ��cþ �TcðdÞ;

which leads to yþ �c ¼ �TcðdÞ. Since m is the least natural

number such that mTcðdÞ 2 � \ Tcð�Þ, then

� ¼ km; k 2 Z;

which proves our claim.

The importance of the number m becomes evident if we

evaluate the quantity c ^mTcðdÞ ¼ �mðc ^ cdc�1Þ. By using

(4) and (18), we have

�mðc ^ cdc�1Þ ¼ �
m

2
ðccdc�1 � cdc�1cÞ

¼ �
m

2
ðdc� cdÞ

¼ mðc ^ dÞ

¼ mða1 ^ a2Þ:

With this result, the coincidence index �ðTcÞ turns out to be

�ðTcÞ ¼
jc ^mTcðdÞj

ja1 ^ a2j
¼

mja1 ^ a2j

ja1 ^ a2j
¼ m:

The value of m is obtained by noticing that the components

of the vector TcðdÞ, with respect to the basis fa1; a2g, are

rational numbers. Let us assume that

TcðdÞ ¼
p1

q1

a1 þ
p2

q2

a2;

then

�ðTcÞ ¼ m ¼ l:c:m:ðq1; q2Þ;

where l.c.m. stands for the least common multiple function.

5.2. Characterization of OC(C)

We mentioned above that, in the case under study, it may

occur that, given a vector c 2 �, Tc =2OCð�Þ. Here we provide

conditions under which a reflection Tc is a coincidence

reflection.

As a general result, first notice that, for any non-zero

vectors x and v, we have that

�vxv�1
¼ �2

x � v

v2
vþ x;

which readily follows from
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vxv ¼ vðx � vþ x ^ vÞ

¼ ðx � vÞvþ vðx ^ vÞ

¼ ðx � vÞvþ 1
2 vðxv� vxÞ

¼ ðx � vÞvþ 1
2 vxv� 1

2 v2x:

Now let � ¼ Za1 � Za2 be a lattice in R2 (not necessarily

rectangular). If c 2 �, then TcðxÞ ¼ �cxc�1 2 OCð�Þ provided

that there exist mi 2 Z such that miTcðaiÞ ¼ mið�caic
�1Þ 2 �,

for each i ¼ 1; 2. That is,

mið�caic
�1Þ ¼ �mi

2ðc � aiÞ

c2
cþmiai 2 �; i ¼ 1; 2:

It is then enough that �mi½2ðc � aiÞ=c2�c 2 � or, equivalently,

ðc � aiÞ

c2
2 Q; i ¼ 1; 2: ð19Þ

Consider the rectangular lattice � ¼ Za1 � Za2, a1 � a2 ¼ 0.

Without loss of generality, suppose that a2
1 ¼ 1 and a2

2 ¼ �. If

c ¼ �1a1 þ �2a2 2 �, where g:c:d:ð�1; �2Þ ¼ 1, then

c � a1 ¼ �1

c � a2 ¼ ��2

c2
¼ �2

1 þ ��
2
2:

Consequently, Tc 2 OCð�Þ provided that � 2 Q.

Now suppose � =2Q. It follows that

�1

�2
1 þ ��

2
2

¼
p

q
;

��2

�2
1 þ ��

2
2

¼
r

s
;

where p; q; r; s 2 Z and g:c:d:ðp; qÞ ¼ g:c:d:ðr; sÞ ¼ 1. From

the above expressions, we obtain

p�2
2� ¼ �1ðq� �1pÞ; �2�ðs� �2rÞ ¼ r�2

1:

Since � =2Q, then necessarily �1 ¼ 0 or �2 ¼ 0, that is, c ¼ a

or c ¼ b. Consequently, if � ¼ a2
2 =2Q, then OCð�Þ ¼

fI;Ta1
;Ta2

;Ta2
Ta1
g.

The above results can be summarized in the following

theorem, which characterizes OCð�Þ by providing a way to

generate it from vectors of �:

Theorem 2. Let � ¼ Za1 � Za2 be a lattice in R2, where

a1 � a2 ¼ 0 and a2
1 ¼ 1. Let c ¼ �1a1 þ �2a2 be a vector in �,

where g:c:d:ð�1; �2Þ ¼ 1, and TcðxÞ ¼ �cxc�1 be a reflection

by the vector c. We have the following possibilities.

1. If a2
2 2 Q then Tc 2 OCð�Þ.

2. If a2
2 =2 Q then OCð�Þ ¼ fI;Ta1

;Ta2
;Ta2

Ta1
g.

5.3. Example

Let � be a rectangular lattice spanned by the vectors

a1 ¼
3
5 e1 þ

4
5 e2 and a2 ¼ �

8
15 e1 þ

2
5 e2. Now consider the

orthogonal transformation T with matrix representation, with

respect to the canonical basis, given by

T ¼
� 7

25 �
24
25

24
25 �

7
25

� �
;

which corresponds to a rotation through an angle

� ¼ 106:2602	, that belongs to OCð�Þ. The vector b, defined in

(16), is b ¼ Tða1Þ � a1 ¼ �
32
25 a1 þ

36
25 a2. Thus, c, defined in

Proposition 9, can be

c ¼ 25
4 ½Tða1Þ � a1� ¼ �8a1 þ 9a2;

which belongs to �. We now follow the procedure described in

x5.1 to obtain the coincidence index and a basis of the CSL.

Since �8ð1Þ þ 9ð1Þ ¼ 1, we define d ¼ a1 � a2 to get

� ¼ Zc� Zd; TðxÞ ¼ ca2xa2c�1:

Then after some calculation we have that

TcðdÞ ¼ �cdc�1
¼ 23

25 a1 �
29
25 a2;

and the least natural number m such that mTcðdÞ 2 � \ Tcð�Þ
is m ¼ 25. With this result, we obtain the coincidence index

�ðTcÞ ¼ m ¼ 25 and a basis of the CSL, � \ Tð�Þ:

fc; 25TcðdÞg ¼ f�8a1 þ 9a2; 23a1 � 29a2g:

6. The rhombic lattice

Let � be a rhombic lattice in R2, i.e. � ¼ Za1 � Za2, where a1

and a2 are two linearly independent vectors such that a2
1 ¼ a2

2.

In this section, we study and characterize the group OCð�Þ.
First, notice that Proposition 7 is valid for arbitrary lattices

in R2, so it remains to show that an arbitrary orthogonal

transformation T can be decomposed into a product of

reflections by using the basis vectors of a rhombic lattice.

Proposition 10. Let T : R2
! R2 be a nontrivial orthogonal

transformation. If a1 and a2 are linearly independent vectors

such that a2
1 ¼ a2

2, then there exists b 2 R2 such that

TðxÞ ¼

TbðxÞ ¼ �bxb�1

if detðTÞ ¼ �1,

TbTa1�a2
ðxÞ ¼ bða1 � a2Þxða1 � a2Þ

�1b�1

if detðTÞ ¼ 1.

8>><
>>:

Proof. Let us first prove that a1 � a2 and a1 þ a2 are orthog-

onal:

2ða1 � a2Þ � ða1 þ a2Þ ¼ ða1 � a2Þða1 þ a2Þ

þ ða2 þ a1Þða1 � a2Þ

¼ ða2
1 � a2a1 þ a1a2 � a2

2Þ

þ ða2a1 þ a2
1 � a1a2 � a2

2Þ

¼ 0:

Therefore, fa1 þ a2; a1 � a2g is an orthogonal basis of R2. Let

us define

d1 ¼ a1 þ a2;

d2 ¼ a1 � a2:
ð20Þ

Assume T : R2
! R2, different from the identity, and

detðTÞ ¼ �1. In this case, T is a reflection by a line, say l. Since

Acta Cryst. (2005). A61, 173–184 M. A. Rodrı́guez et al. � The coincidence problem 181

research papers



T is different from the identity and fd1; d2g is an orthogonal

basis of R2, then TðdiÞ 6¼ di for some i ¼ 1; 2. Now consider

the vector

b ¼ Tðd1Þ � d1; ð21Þ

which is orthogonal to the reflection line l and can be used to

write the reflection as in Lemma 1: TðxÞ ¼ TbðxÞ ¼ �bxb�1.

Now assume detðTÞ ¼ 1. In this case, T is a rotation through

an angle � and also TðdiÞ 6¼ di for some i ¼ 1; 2. By consid-

ering the vector b defined in (21), we have that

Tb½Tðd1Þ� ¼ Tbðbþ d1Þ ¼ �bþ Tðd1Þ ¼ d1:

Since detðTbTÞ ¼ �1, it readily follows that Tb½Tðd2Þ� ¼ �d2

and that Td2
Tb½Tðd2Þ� ¼ d2. Therefore, T ¼ TbTd2

. &

Now we will see that any orthogonal transformation

T 2 OCð�Þ can be decomposed as a product of coincidence

reflections in vectors of the lattice �.

Proposition 11. Let � ¼ Za1 � Za2 be a lattice in R2, where

a2
1 ¼ a2

2. If T : R2
! R2 is a nontrivial coincidence transfor-

mation, i.e. T 2 OCð�Þ, then there exists c 2 � such that

TðxÞ ¼
TcðxÞ ¼ �cxc�1 if detðTÞ ¼ �1;
TcTd2

ðxÞ ¼ �cd2xd�1
2 c�1 if detðTÞ ¼ 1,

�

where d2 ¼ a1 � a2.

Proof. Consider detðTÞ ¼ �1. Then T is a reflection and, by

Proposition 10, there exists b 2 R2 such that TðxÞ ¼

TbðxÞ ¼ �bxb�1. Since T 2 OCð�Þ, Tðd1Þ has rational

components with respect to the basis fd1; d2g and, conse-

quently, b also has rational components. Thus, we can find

� 2 Z such that �b 2 �. By defining c ¼ �b, and using (9), we

have TðxÞ ¼ �cxc�1.

Now assume detðTÞ ¼ 1. In this case, T is a rotation through

an angle � and, by Proposition 10, there exists b 2 R2 such that

TðxÞ ¼ bd2xd�1
2 b�1. By the above arguments, we can find

� 2 Z such that �b 2 �. By defining c ¼ �b, we have

TðxÞ ¼ cd2xd�1
2 c�1. &

As in the case of the rectangular lattice, given a vector

c 2 �, it may occur that Tc =2OCð�Þ. In x6.2, we provide

conditions under which a reflection Tc is a coincidence

reflection.

By following the same ideas applied to the case of the

rectangular lattice, we have that every vector c 2 � defines the

following two orthogonal transformations:

TcðxÞ ¼ �cxc�1;

TcTd2
ðxÞ ¼ RcðxÞ ¼ cd2xd2c�1:

In particular, if TcðxÞ 2 OCð�Þ, since Td2
ð�Þ ¼ �, then

� \ Tcð�Þ ¼ � \ Rcð�Þ; �ðTcÞ ¼ �ðRcÞ;

and a basis of � \ Rcð�Þ can be obtained if the basis of

� \ Tcð�Þ is known.

6.1. Coincidence index and basis of the CSL

The procedure to determine the coincidence index �ðTcÞ

and a basis of the CSL, � \ Tcð�Þ, follows the same lines as in

the case of the rectangular lattice. For that reason, here we

only summarize the results without further details.

Let � ¼ Za1 � Za2 be a lattice in R2, such that a2
1 ¼ a2

2.

From the previous results, we know that there exists

c ¼ �1a1 þ �2a2 2 �, where g:c:d:ð�1; �2Þ ¼ 1, such that

Tc 2 OCð�Þ. Given that �1 and �2 are relatively prime, there

exist integers �1 and �2 such that

�1�1 þ �2�2 ¼ 1:

It guarantees the existence of a vector d 2 � such that

� ¼ Zc� Zd;

where

d ¼ �2a1 � �1a2:

A basis of � \ Tcð�Þ is fc;mTcðdÞg, where m is the least natural

number such that

mTcðdÞ 2 � \ Tcð�Þ:

The natural number m is also the coincidence index �ðTcÞ, and

its value can be obtained by assuming that

TcðdÞ ¼
p1

q1

a1 þ
p2

q2

a2;

then

�ðTcÞ ¼ m ¼ l:c:m:ðq1; q2Þ:

6.2. Characterization of OC(C)

In this section, the conditions under which a reflection Tc is

a coincidence reflection are deduced. We start from the

condition (19), which is valid for arbitrary lattices.

Let � ¼ Za1 � Za2, a2
1 ¼ a2

2, be a rhombic lattice. If c 2 �,

our purpose is to find conditions under which

TcðxÞ ¼ �cxc�1 2 �. Without loss of generality, suppose that

a2
1 ¼ a2

2 ¼ 1. If c ¼ �1a1 þ �2a2 2 �, where g:c:d:ð�1; �2Þ ¼ 1,

then from (19) we have

c � a1 ¼ �1 þ �2a1 � a2;

c � a2 ¼ �2 þ �1a1 � a2;

c2 ¼ �2
1 þ �

2
2 þ 2�1�2a1 � a2:

Consequently, Tc 2 OCð�Þ provided that a1 � a2 2 Q.

Now suppose that a1 � a2 =2Q. It follows that

�1 þ �2a1 � a2

�2
1 þ �

2
2 þ 2�1�2a1 � a2

¼
p

q
;

�2 þ �1a1 � a2

�2
1 þ �

2
2 þ 2�1�2a1 � a2

¼
r

s
;

where p; q; r; s 2 Z and g:c:d:ðp; qÞ ¼ g:c:d:ðr; sÞ ¼ 1. From

the above expressions, we obtain:
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�2ðq� 2�1pÞa1 � a2 ¼ pð�2
1 þ �

2
2Þ � q�1;

�1ðs� 2�2rÞa1 � a2 ¼ rð�2
1 þ �

2
2Þ � s�2:

Since a1 � a2 =2Q, then necessarily the coefficients of a1 � a2

must vanish, that is

�2ðq� 2�1pÞ ¼ 0;

�1ðs� 2�2rÞ ¼ 0;

pð�2
1 þ �

2
2Þ � q�1 ¼ 0;

rð�2
1 þ �

2
2Þ � s�2 ¼ 0;

ð22Þ

for some �i 6¼ 0, i ¼ 1; 2.

Suppose that �1 6¼ 0. In this case, the following equation

must be fulfilled:

r

s
¼

1

2�2

;

thus r ¼ 1, s ¼ 2�2 and (22) becomes

rð�2
1 þ �

2
2Þ � s�2 ¼ 0;

ð�2
1 þ �

2
2Þ � 2�2

2 ¼ 0;

�2
1 � �

2
2 ¼ 0;

ð�1 þ �2Þð�1 � �2Þ ¼ 0:

These equations lead to c ¼ a1 þ a2 or c ¼ a1 � a2. The same

conclusion is obtained if �2 6¼ 0. Consequently, if a1 � a2 =2Q,

then OCð�Þ ¼ fI;Td1
;Td2

;Td2
Td1
g, where d1 and d2 are given

by (20).

The above results can be summarized in the following

theorem, which characterizes OCð�Þ by providing a way to

generate it from vectors of �:

Theorem 3. Let � ¼ Za1 � Za2 be a lattice in R2, where

a2
1 ¼ a2

2. Let c ¼ �1a1 þ �2a2 be a vector in �, where

g:c:d:ð�1; �2Þ ¼ 1 and TcðxÞ ¼ �cxc�1 is a reflection by the

vector c. We have the following possibilities.

1. If a1 � a2 2 Q, then Tc 2 OCð�Þ.
2. If a1 � a2 =2Q, then OCð�Þ ¼ fI;Td1

;Td2
;Td2

Td1
g, where

d1 ¼ a1 þ a2 and d2 ¼ a1 � a2.

6.3. Example

Consider the hexagonal lattice � ¼ Za1 � Za2, where

a1 ¼ ð1; 0Þ and a2 ¼ ð1=2;
ffiffiffi
3
p
=2Þ. The diagonals (20) are then

given by d1 ¼ ð3=2;
ffiffiffi
3
p
=2Þ and d2 ¼ ð1=2;�

ffiffiffi
3
p
=2Þ.

Now let T : R2
! R

2 be an orthogonal transformation with

matrix representation, with respect to the canonical basis,

given by

� 13
14 � 3

ffiffi
3
p

14
3
ffiffi
3
p

14 � 13
14

 !
:

With respect to the basis fa1; a2g, the matrix is

� 8
7 �

3
7

3
7 �

5
7

� �
:

Therefore, (21) yields b ¼ Tðd1Þ � d1 ¼ �ð45=14Þe1�

ð9
ffiffiffi
3
p
=14Þe2 ¼ �ð18=7Þa1 � ð9=7Þa2 and the vector c (¼ �b)

can be

c ¼ 2a1 þ a2:

Since the determinant of the matrix representation is 1, the

transformation is a rotation given by TðxÞ ¼ TcTd2
ðxÞ.

Now, since �1 ¼ 2 and �2 ¼ 1 then � is spanned by fc; dg,

where d ¼ a1 þ a2. As described at the end of x6.1, a basis of

� \ Tað�Þ is fc;mTcðdÞg and the value of m is obtained from

TcðdÞ ¼ �cdc�1. By substituting the values of c and d, after

some calculation we get

TcðdÞ ¼ �
11
7 a1 �

2
7 a2:

Thus, m ¼ �ðTÞ ¼ 7 and a basis of the coincidence lattice is

f2a1 þ a2;�11a1 � 2a2g.

7. Conclusions

In this work, we solve the coincidence problem for planar

lattices by using Clifford algebra. It allows us to algebraically

characterize the group of coincidence isometries in terms of

the lattice vectors (objects on which the group operates), and

to provide explicit expressions for both the coincidence index

and the basis of the coincidence lattices.

Clifford algebra has proved to be a useful language in many

areas of physics, engineering and computer science and we

hope that its power for expressing geometric ideas, used here

to solve the coincidence problem in planar lattices, would

motivate its use in other fields of geometric crystallography.

The present approach can be extended to higher dimensions

and this work is under way.
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